Theories of Covalent Bonding December 6, 2009

Valence Bond Theory

1. sp hybridization. In sp hybridization, ____ s orbital(s) hybridize with ____ p orbital(s) to form ____ sp orbital(s). The hybrid orbitals are oriented at ____ 8000 to each other to form a ____ linear_ electron group geometry. ____ p orbitals remain unhybridized.

2. sp² hybridization. In sp² hybridization, ____ s orbital(s) hybridize with ____ p orbital(s) to form ____ sp² orbital(s). The hybrid orbitals are oriented at _____ or to each other to form a _____ trigonal electron group geometry. ____ p orbitals remain unhybridized.

3. sp³ hybridization. In sp³ hybridization, ____ s orbital(s) hybridize with ____ p orbital(s) to form _____ sp³ orbital(s). The hybrid orbitals are oriented at _____ or to each other to form a _____ trigonal electron group geometry. _____ p orbitals remain unhybridized.

4. Consider the following molecule:

- A. There are $\frac{9}{}$ sigma (σ) bonds and $\frac{2}{}$ pi (π)bonds.
- B. The Carbon #1 is $8p^2$ hybridized and the Carbon #2 is $8p^3$ hybridized.
- C. In the C-F bond, the Carbon sp² orbital is overlapped with the Flourine orbital.
- D. On Carbon #2, the Carbon <u>sp3</u> orbital is overlapped with the <u>S</u> Hydrogen orbital.

For the following molecules, indicate the molecular shape, hybridization of the central atom, the nature of the bonds on the central atom (for example: sp²-p), number of sigma and pi bonds, and whether or not the molecule is polar.

FNO

SF₄ H_2O

Sp3 S Sp3 Nonpotar :F: Sp3 :F:

Tetrahedral Shape (109.50) Sp3 hybridization PCl3 4 signa bond Opi

 CO_2

This onal Pyramidal (2109.5°)
Sp 3 hybridization

1)2 3 sigma Opi
FNO

: NEC - CEPN: Nonpolar

Linear (1800) sp hybridization, 20 47

8 H51 1 5+ Polar

angular shape (109,8) spa hybridization 2 sigma Opi

F / Polar (1200)

Sp2 hybridization

20 17